The Calibration Process and Setting of Image Brightness to Achieve Optimum Strain Measurement Accuracy Using Stereo-Camera Digital Image Correlation

Author:

Hagara Martin1ORCID,Huňady Róbert1ORCID,Lengvarský Pavol1ORCID,Vocetka Michal2ORCID,Palička Peter1ORCID

Affiliation:

1. Department of Applied Mechanics and Mechanical Engineering, Faculty of Mechanical Engineering, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia

2. Department of Robotics, Faculty of Mechanical Engineering, VSB—Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava, Czech Republic

Abstract

Combining the drilling method with the digital image correlation (DIC) method is becoming more common to speed up the measurement and evaluate the strains relieved at several locations. However, to obtain the most accurate results, it is necessary to be aware of the influence of possible aspects that could adversely affect the results of the strain/stress analysis carried out using DIC. The paper describes several analyses to assess the influence of the 3D DIC system’s calibration procedure for strain/stress analysis of the specimen with a hole loaded with four different levels of tensile force. In addition, the paper also deals with the analysis of the influence of the image brightness, which was modified by changing the exposure time of the cameras. Based on the results of strain/stress analyses performed on small areas (approx. 25 × 25 mm) of a specimen with a hole by a stereo-camera DIC system, it can be concluded that both analysed factors can negatively influence the results. The most accurate results are ensured using the calibration target of very high manufacturing precision sized similarly to the field of view observed in correlation mode. The optimal image brightness is adjusted when the mean grey value of the image is from the range of 56 up to 171 with as evenly distributed image point intensities as possible.

Funder

Ministry of Education, Science, Research and Sport of the Slovak Republic

Slovak Academy of Sciences

Research Centre of Advanced Mechatronic Systems

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3