Abstract
Piperidine pharmacophore-containing compounds have demonstrated therapeutic efficacy against a range of diseases and are now being investigated in cancer. A series of 3-chloro-3-methyl-2,6-diarylpiperidin-4-ones, compounds (I–V) were designed and synthesized for their evaluation as a potential anti-cancer agent. Compounds II and IV reduced the growth of numerous hematological cancer cell lines while simultaneously increasing the mRNA expression of apoptosis-promoting genes, p53 and Bax. Molecular docking analyses confirmed that compounds can bind to 6FS1, 6FSO (myeloma), 6TJU (leukemia), 5N21, and 1OLL (NKTL). Computational ADMET research confirmed the essential physicochemical, pharmacokinetic, and drug-like characteristics of compounds (I–V). The results revealed that these compounds interact efficiently with active site residues and that compounds (II) and (V) can be further evaluated as potential therapeutic candidates.
Subject
Molecular Biology,Biochemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Discovery of novel dihydro-pyrimidine hybrids: insight into the design, synthesis, biological evaluation and absorption, distribution, metabolism and excretion studies;Future Medicinal Chemistry;2024-09-12
2. Synthesis, characterization and anti-microbiological evaluation of 2-[(2,6-diaryl piperidin-4-yl)hydrazono]-2,3-dihydrothiazoles as a new class of antimicrobial agents;Journal of the Iranian Chemical Society;2024-09-09
3. Transforming Poisonous Phenol into Biosafe Antimicrobial Coumarins: Synthesis and Evaluation;Russian Journal of Bioorganic Chemistry;2024-08
4. Study of new p-tolylpiperidin-4-one as an anti-Parkinson agent: Synthesis, spectral, XRD-crystal, in silico study, electronic and intermolecular interaction investigations by the DFT method;Materials Chemistry and Physics;2024-07
5. Computational Investigation of Polo-like Kinase 1 (plk1): Inhibitive Potential of Benzimidazole-Carbonamide Derivatives for Cancer Treatment;PHYS CHEM RES;2024