Design and Development of a Novel Ultrasonic Field Wetting Angle Measuring Instrument for Researching the Wetting of the Liquid–Solid Interface

Author:

Zhao Jingtao,Ning Liping,Jiang Zongming,Li YinglongORCID

Abstract

A key technical problem in the preparation of Al-Ti-C grain refiner and other composite materials is the poor wetting of the Al-C interface, which greatly restricts the development of the preparation technology of related composite materials. In view of this scientific challenge, a novel ultrasonic field wetting angle measuring instrument has been designed to research the wetting behavior of the liquid–solid interface and ensure that preparation conditions are optimized. The dimensional parameters of the ultrasonic transducer and the horn in the novel ultrasonic wetting angle measuring instrument have been designed by theoretical calculation, and the modal analysis was performed for the ultrasonic horn using the functions of displacement and time. Modal analysis was utilized to optimize the dimension of the ultrasonic horn, and the natural frequency of the longitudinal vibration of the horn was reduced from 22,130 Hz to 22,013 Hz, resulting in an error rate between the actual value (22,013 Hz) and the design value (20 kHz) of less than 1%. In addition, the influence of different transition arc radiuses on the maximum stress of the optimized ultrasonic horn was analyzed.

Funder

The National Nature Science Foundation of China,

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3