Improving the Strength and Leaching Characteristics of Pb-Contaminated Silt through MICP

Author:

Zha Fusheng,Wang Hao,Kang Bo,Liu Congmin,Xu Long,Tan Xiaohui

Abstract

Microbial-induced carbonate precipitation (MICP) is an effective technology for repairing sites contaminated by heavy metals. In this work, Sporosarcina pasteurii was cultured and mixed with a cementing fluid as a binder to remediate Pb-contaminated silt. The effects of varying experimental parameters, including Pb concentration and dry density, were also tested and analyzed. The leaching and strength characteristics and the MICP improvement mechanism of the Pb-contaminated silt were studied. Samples with dry densities of 1.50 g/cm3 and 1.55 g/cm3 exhibited the highest unconfined compression strengths (UCS). Scanning electron microscopy showed that not all CaCO3 crystals produced a cementation effect, with some filling pores in an invalid cementation form. The results showed that MICP remediation of low Pb2+ concentration-contaminated silt could meet the relevant Chinese environmental safety standards. Low Pb concentrations helped improve MICP-treated, Pb-contaminated silt strength, whereas high Pb concentrations significantly reduced this strength. Testing to determine the tolerance of an active microbe, Sporosarcina pasteurii, showed that trace amounts of Pb promoted its growth, thus improving the MICP effect, whereas excessive Pb had a toxic effect, which reduced MICP effectiveness. Mercury injection experiments showed that MICP produced CaCO3; this mainly filled soil mesopores and macropores and, thus, improved the soil UCS. Scanning electron microscopy showed that not all CaCO3 crystals produced a cementation effect, with some filling pores in an invalid cementation form. MICP was innovatively applied to silt sites with heavy metal pollutants while considering the soil compaction in actual construction, thus broadening the application scope of MICP, optimizing the construction process, and reducing the construction cost.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of Anhui Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3