Factors affecting the MICP stabilization of washed recycled sands derived from demolition wastes

Author:

Fouladi Amir Sina,Arulrajah Arul,Chu Jian,Zhou Annan,Horpibulsuk Suksun

Abstract

AbstractMicrobially induced calcium carbonate precipitation (MICP) is recognized as an eco-friendly approach in biological chemistry, offering significant potential for enhancing soil engineering properties. This study investigates the viability of MICP for stabilizing washed recycled sands (RS) sourced from construction and demolition wastes, offering significant potential for enhancing soil engineering properties and aligning this research study with sustainable waste management practices. Through meticulously designed laboratory experiments, this research examined the micro and macro biomineralization processes to assess the feasibility and factors influencing RS stabilization. The experimental setup evaluates the impact of cementation media concentration, ambient temperature, treatment cycles, and curing time on MICP-treated RS efficiency. The findings indicate that the optimal MICP conditions can be found at a cementation media concentration of 0.5 mol/L, an ambient temperature of 30 °C, and furthermore, up to 12 treatment cycles can significantly enhance the unconfined compressive strength (UCS) of RS to 724 kPa. In addition, extending the curing time results in a 28% increase in UCS compared to the initial strength of MICP-stabilized RS. Analyses via scanning electron microscopy and X-ray diffraction provide insights into the microstructural and mineralogical transformations that aid the biostabilization of RS. This research underscores the effectiveness of MICP-treated RS for usage as a geomaterial, emphasizing its environmental and practical benefits and furthermore advocates the sustainable usage of MICP for the biostabilization of RS for construction activities.

Funder

Australian Research Council

Swinburne University of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3