Abstract
This paper reports on the utilization of recycled moso bamboo sawdust (BS) as a substitute in a new bio-based cementitious material. In order to improve the incompatibility between biomass and cement matrix, the study firstly investigated the effect of pretreatment methods on the BS. Cold water, hot water, and alkaline solution were used. The SEM images and mechanical results showed that alkali-treated BS presented a more favorable bonding interface in the cementitious matrix, while both compressive and flexural strength were higher than for the other two treatments. Hence, the alkaline treatment method was adopted for additional studies on the effect of BS content on the microstructural, physical, rheological, and mechanical properties of composite mortar. Cement was replaced by alkali-treated BS at 1%, 3%, 5%, and 7% by mass in the mortar mixture. An increased proportion of BS led to a delayed cement setting and a reduction in workability, but a lighter and more porous structure compared to the conventional mortar. Meanwhile, the mechanical performance of composite decreased with BS content, while the compressive and flexural strength ranged between 14.1 and 37.8 MPa and 2.4 and 4.5 MPa, respectively, but still met the minimum strength requirements of masonry construction. The cement matrix incorporated 3% and 5% BS can be classified as load-bearing lightweight concrete. This result confirms that recycled BS can be a sustainable component to produce a lightweight and structural bio-based cementitious material.
Funder
Natural Science Foundation of Zhejiang Province
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献