MangroveSeg: Deep-Supervision-Guided Feature Aggregation Network for Mangrove Detection and Segmentation in Satellite Images

Author:

Dong Heng12,Gao Yifan2,Chen Riqing2,Wei Lifang2ORCID

Affiliation:

1. School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Center for Agroforestry Mega Data Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Abstract

Mangrove forests are significant participants in coastal ecological environment systems. For the development of protection strategies, it is crucial to automatically and accurately detect the distribution and area of mangroves using satellite images. Although many deep-learning-based mangrove detection and segmentation algorithms have made notable progress, the complex regional structures and the great similarity between mangroves and the surrounding environment, as well as the diversity of mangroves, render the task still challenging. To cover these issues, we propose a novel deep-supervision-guided feature aggregation network for mangrove detection and segmentation called MangroveSeg, which is based on a U-shaped structure with ResNet, combining an attention mechanism and a multi-scale feature extraction framework. We also consider the detection and segmentation of mangroves as camouflage detection problems for the improvement and enhancement of accuracy. To determine more information from extracted feature maps in a hidden layer, a deep supervision model is introduced in up-sampling to enhance feature representation. The spatial attention mechanism with attention gates is utilized to highlight significant regions and suppress task-independent feature responses. The feature fusion module can obtain multi-scale information by binding each layer to the underlying information and update feature mappings. We validated our framework for mangrove detection and segmentation using a satellite image dataset, which includes 4000 images comprising 256 × 256 pixels; we used 3002 for training and 998 for testing. The satellite images dataset was obtained from the Dongzhaigang National Nature Reserve located in Haikou City, Hainan Province, China. The proposed method achieved a 89.58% overall accuracy, 89.02% precision, and 80.7% mIoU. We also used the trained MangroveSeg model to detect mangroves on satellite images from other regions. We evaluated the statistical square measure of some mangrove areas and found that the evaluation accuracy can reach 96% using MangroveSeg. The proposed MangroveSeg model can automatically and accurately detect the distribution and area of mangroves from satellite images, which provides a method for monitoring the ecological environment.

Funder

Natural Science Foundation of Fujian Province

Fujian Agriculture and Forestry University Innovation Fund Project

Fund of Cloud Computing and Big Data for Smart Agriculture

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3