Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs

Author:

Nepal UpeshORCID,Eslamiat HosseinORCID

Abstract

In-flight system failure is one of the major safety concerns in the operation of unmanned aerial vehicles (UAVs) in urban environments. To address this concern, a safety framework consisting of following three main tasks can be utilized: (1) Monitoring health of the UAV and detecting failures, (2) Finding potential safe landing spots in case a critical failure is detected in step 1, and (3) Steering the UAV to a safe landing spot found in step 2. In this paper, we specifically look at the second task, where we investigate the feasibility of utilizing object detection methods to spot safe landing spots in case the UAV suffers an in-flight failure. Particularly, we investigate different versions of the YOLO objection detection method and compare their performances for the specific application of detecting a safe landing location for a UAV that has suffered an in-flight failure. We compare the performance of YOLOv3, YOLOv4, and YOLOv5l while training them by a large aerial image dataset called DOTA in a Personal Computer (PC) and also a Companion Computer (CC). We plan to use the chosen algorithm on a CC that can be attached to a UAV, and the PC is used to verify the trends that we see between the algorithms on the CC. We confirm the feasibility of utilizing these algorithms for effective emergency landing spot detection and report their accuracy and speed for that specific application. Our investigation also shows that the YOLOv5l algorithm outperforms YOLOv4 and YOLOv3 in terms of accuracy of detection while maintaining a slightly slower inference speed.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference39 articles.

1. Drone Journalism: Newsgathering applications of Unmanned Aerial Vehicles (UAVs) in covering conflict, civil unrest and disaster;Corcoran;Flinders Univ. Adelaide,2014

2. A review on deep learning in UAV remote sensing

3. Spatial‐Temporal Variation of Lake Surface Water Temperature and Its Driving Factors in Yunnan‐Guizhou Plateau

4. Yolov3: An incremental improvement;Redmon;arXiv,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3