Challenges and practices of deep learning model reengineering: A case study on computer vision

Author:

Jiang WenxinORCID,Banna VishnuORCID,Vivek NaveenORCID,Goel AbhinavORCID,Synovic NicholasORCID,Thiruvathukal George K.ORCID,Davis James C.ORCID

Abstract

Abstract Context Many engineering organizations are reimplementing and extending deep neural networks from the research community. We describe this process as deep learning model reengineering. Deep learning model reengineering — reusing, replicating, adapting, and enhancing state-of-the-art deep learning approaches — is challenging for reasons including under-documented reference models, changing requirements, and the cost of implementation and testing. Objective Prior work has characterized the challenges of deep learning model development, but as yet we know little about the deep learning model reengineering process and its common challenges. Prior work has examined DL systems from a “product” view, examining defects from projects regardless of the engineers’ purpose. Our study is focused on reengineering activities from a “process” view, and focuses on engineers specifically engaged in the reengineering process. Method Our goal is to understand the characteristics and challenges of deep learning model reengineering. We conducted a mixed-methods case study of this phenomenon, focusing on the context of computer vision. Our results draw from two data sources: defects reported in open-source reeengineering projects, and interviews conducted with practitioners and the leaders of a reengineering team. From the defect data source, we analyzed 348 defects from 27 open-source deep learning projects. Meanwhile, our reengineering team replicated 7 deep learning models over two years; we interviewed 2 open-source contributors, 4 practitioners, and 6 reengineering team leaders to understand their experiences. Results Our results describe how deep learning-based computer vision techniques are reengineered, quantitatively analyze the distribution of defects in this process, and qualitatively discuss challenges and practices. We found that most defects (58%) are reported by re-users, and that reproducibility-related defects tend to be discovered during training (68% of them are). Our analysis shows that most environment defects (88%) are interface defects, and most environment defects (46%) are caused by API defects. We found that training defects have diverse symptoms and root causes. We identified four main challenges in the DL reengineering process: model operationalization, performance debugging, portability of DL operations, and customized data pipeline. Integrating our quantitative and qualitative data, we propose a novel reengineering workflow. Conclusions Our findings inform several conclusion, including: standardizing model reengineering practices, developing validation tools to support model reengineering, automated support beyond manual model reengineering, and measuring additional unknown aspects of model reengineering.

Funder

Google

Cisco Systems

National Science Foundation

Publisher

Springer Science and Business Media LLC

Reference207 articles.

1. ONNX (2019a) | Home. https://onnx.ai/

2. Portability between deep learning frameworks – with ONNX (2019b) https://blog.codecentric.de/en/2019/08/portability-deep-learning-frameworks-onnx/

3. Managing labels (2020) https://docs.github.com/en/issues/using-labels-and-milestones-to-track-work/managing-labels

4. Papers with Code - ML Reproducibility Challenge 2021 Edition (2020) https://paperswithcode.com/rc2021

5. Being a Computer Vision Engineer in 2021 (2021) https://viso.ai/computer-vision/computer-vision-engineer/

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interoperability in Deep Learning: A User Survey and Failure Analysis of ONNX Model Converters;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3