Does the Inclusion of Spatio-Temporal Features Improve Bus Travel Time Predictions? A Deep Learning-Based Modelling Approach

Author:

Lee GyeongjaeORCID,Choo Sangho,Choi SungtaekORCID,Lee Hyangsook

Abstract

With the abundance of public transportation in highly urbanized areas, it is common for passengers to make inefficient or flawed transport decisions due to a lack of information. The exact arrival time of a bus is an example of such information that can aid passengers in making better decisions. The purpose of this study is to provide a method for predicting path-based bus travel time, thereby assisting accurate bus arrival and departure time predictions at each bus stop. Specifically, we develop a Geo-conv Long Short-term Memory (LSTM) model that (1) extracts subsequent spatial features through a 1D Convolution Neural Network (CNN) for the entire bus travel sequence and (2) captures the temporal dependencies between subsequences through the LSTM network. Additionally, this study utilizes additional variables that affect two components of bus travel time (dwelling time and transit time) to precisely predict travel time. The constructed model is then evaluated by the practical application to two bus lines operating in Seoul, Korea. The results show that our model outperforms three other baseline models. Two bus lines with different types of operation show different model performance patterns that are dependent on travel distance. Interestingly, we find that the variable related to the link of the stop location appears to play an important role in predicting bus travel time. We believe that these novel findings will contribute to the literature on transportation and, in particular, on deep learning-based travel time prediction.

Funder

Incheon National University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference62 articles.

1. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER. A/420),2019

2. Global Emissions Trends and G20 Status and Outlook;Kuramochi,2020

3. Bus network design

4. The Design of Routes, Service Frequencies, and Schedules for a Municipal Bus Undertaking: A Case Study

5. The design of bus route systems — An interactive location-allocation approach

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3