Affiliation:
1. School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China
2. Software College, Northeastern University, Shenyang 110819, China
3. Institute of Reservoir Engineering, College of Petroleum Engineering, China University of Petroleum (Huadong), Qingdao 266580, China
Abstract
Providing accurate information about bus travel times can help passengers plan their itinerary and reduce waiting time. However, due to various uncertainty factors and the sparsity of single-route data, traditional travel time predictions cannot accurately describe the credibility of the prediction results, which is not conducive to passengers waiting based on the predicted results. To address the above issues, this paper proposes a bus travel time prediction intervals model based on shared road segments, multiple routes’ driving style similarity, and the bootstrap method. The model first divides the predicted route into segments, dividing adjacent stations shared by multiple routes into one section. Then, the hierarchical clustering algorithm is used to group all drivers in multiple bus routes in this section according to their driving styles. Finally, the bootstrap method is used to construct a bus travel time prediction interval for different categories of drivers. The travel time data sets of Shenyang 239, 134, and New Area Line 1 were selected for experimental verification. The experimental results indicate that the quality of the prediction interval constructed using a data set fused with multiple routes is better than that constructed using a single-route data set. In the two cases studied, the MPIW of the three time periods decreased by 101.04 s, 151.72 s, 33.87 s, and 126.58 s, 127.47 s, 17.06 s, respectively.
Funder
the Key Project of National Natural Science Foundation of China