Software-Defined-Networking-Based One-versus-Rest Strategy for Detecting and Mitigating Distributed Denial-of-Service Attacks in Smart Home Internet of Things Devices

Author:

Karmous Neder1ORCID,Aoueileyine Mohamed Ould-Elhassen1ORCID,Abdelkader Manel2,Romdhani Lamia3ORCID,Youssef Neji1ORCID

Affiliation:

1. Innov’COM Laboratory, Higher School of Communication of Tunis (SUPCOM), Technopark Elghazala, Raoued, Ariana 2083, Tunisia

2. Computer Science Department, Tunis Business School, University Tunis Elmanar, Tunis 1068, Tunisia

3. Core Curriculum Program, Deanship of General Studies, University of Qatar, Doha P.O. Box 2713, Qatar

Abstract

The number of connected devices or Internet of Things (IoT) devices has rapidly increased. According to the latest available statistics, in 2023, there were approximately 17.2 billion connected IoT devices; this is expected to reach 25.4 billion IoT devices by 2030 and grow year over year for the foreseeable future. IoT devices share, collect, and exchange data via the internet, wireless networks, or other networks with one another. IoT interconnection technology improves and facilitates people’s lives but, at the same time, poses a real threat to their security. Denial-of-Service (DoS) and Distributed Denial-of-Service (DDoS) attacks are considered the most common and threatening attacks that strike IoT devices’ security. These are considered to be an increasing trend, and it will be a major challenge to reduce risk, especially in the future. In this context, this paper presents an improved framework (SDN-ML-IoT) that works as an Intrusion and Prevention Detection System (IDPS) that could help to detect DDoS attacks with more efficiency and mitigate them in real time. This SDN-ML-IoT uses a Machine Learning (ML) method in a Software-Defined Networking (SDN) environment in order to protect smart home IoT devices from DDoS attacks. We employed an ML method based on Random Forest (RF), Logistic Regression (LR), k-Nearest Neighbors (kNN), and Naive Bayes (NB) with a One-versus-Rest (OvR) strategy and then compared our work to other related works. Based on the performance metrics, such as confusion matrix, training time, prediction time, accuracy, and Area Under the Receiver Operating Characteristic curve (AUC-ROC), it was established that SDN-ML-IoT, when applied to RF, outperforms other ML algorithms, as well as similar approaches related to our work. It had an impressive accuracy of 99.99%, and it could mitigate DDoS attacks in less than 3 s. We conducted a comparative analysis of various models and algorithms used in the related works. The results indicated that our proposed approach outperforms others, showcasing its effectiveness in both detecting and mitigating DDoS attacks within SDNs. Based on these promising results, we have opted to deploy SDN-ML-IoT within the SDN. This implementation ensures the safeguarding of IoT devices in smart homes against DDoS attacks within the network traffic.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3