The Guardian Node Slow DoS Detection Model for Real-Time Application in IoT Networks

Author:

Reed Andy1ORCID,Dooley Laurence1,Mostefaoui Soraya Kouadri1

Affiliation:

1. School of Computing and Communications, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK

Abstract

The pernicious impact of malicious Slow DoS (Denial of Service) attacks on the application layer and web-based Open Systems Interconnection model services like Hypertext Transfer Protocol (HTTP) has given impetus to a range of novel detection strategies, many of which use machine learning (ML) for computationally intensive full packet capture and post-event processing. In contrast, existing detection mechanisms, such as those found in various approaches including ML, artificial intelligence, and neural networks neither facilitate real-time detection nor consider the computational overhead within resource-constrained Internet of Things (IoT) networks. Slow DoS attacks are notoriously difficult to reliably identify, as they masquerade as legitimate application layer traffic, often resembling nodes with slow or intermittent connectivity. This means they often evade detection mechanisms because they appear as genuine node activity, which increases the likelihood of mistakenly being granted access by intrusion-detection systems. The original contribution of this paper is an innovative Guardian Node (GN) Slow DoS detection model, which analyses the two key network attributes of packet length and packet delta time in real time within a live IoT network. By designing the GN to operate within a narrow window of packet length and delta time values, accurate detection of all three main Slow DoS variants is achieved, even under the stealthiest malicious attack conditions. A unique feature of the GN model is its ability to reliably discriminate Slow DoS attack traffic from both genuine and slow nodes experiencing high latency or poor connectivity. A rigorous critical evaluation has consistently validated high, real-time detection accuracies of more than 98% for the GN model across a range of demanding traffic profiles. This performance is analogous to existing ML approaches, whilst being significantly more resource efficient, with computational and storage overheads being over 96% lower than full packet capture techniques, so it represents a very attractive alternative for deployment in resource-scarce IoT environments.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3