Affiliation:
1. Civil Engineering Department, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
2. Chemical Engineering Department, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
Abstract
Anaerobic co-digestion (AnCoD) presents several advantages over conventional mono-digestion. Various factors can impact the efficiency of the co-digestion process, including the mixing ratio of the feedstocks. This study primarily investigates the effects of different mixing ratios on methane production during the co-digestion of source-separated municipal organic waste (SSO) with thickened waste activated sludge (TWAS). While the C/N or COD/N ratio has generally been used for optimizing the mixing ratios of co-digested feedstocks, a new approach is introduced in this study to evaluate the effects of the lipid, protein, and carbohydrate (L:P:C) ratios on the efficiency of AnCoD with respect to methane production, kinetics, and synergism at mixing ratios of TWAS:SSO of 10:90, 30:70, 50:50, 70:30, and 10:90. AnCoD improved methane production and kinetics relative to TWAS at all mixing ratios, the highest of which was at the 10:90 ratio, corresponding to a methane yield, maximum methane production rate, and an L:P:C ratio of 353 mL CH4/g COD, 25 mL CH4/g COD/d, and 8:1:18, respectively. Improvements in methane yields and kinetics due to synergy were evident at all mixing ratios, with improvements in methane yields ranging from 11 to 23% and improvements in kinetics ranging from 18 to 58%. Improvements in methane yields and kinetics were insensitive to the feedstock composition beyond the 50:50 mixing ratio.
Funder
Natural Sciences and Engineering Research Council
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献