Abstract
Acoustic emission techniques are widely used to monitor industrial pipelines. Intelligent methods using acoustic emission signals can analyze acoustic waves and provide important information for leak detection and localization. To address safety and protect the operation of industrial pipelines, a novel hybrid approach based on acoustic emission signals is proposed to achieve reliable leak localization. The proposed method employs minimum entropy deconvolution using the maximization kurtosis norm of acoustic emission signals to remove noise and identify important feature signals. In addition, the damping frequency energy based on the dynamic differential equation with damping term is designed to extract important energy information, and a smooth envelope for the feature signals over time is generated. The zero crossing tracks the arrival time via the envelope changes and identifies the time difference of the acoustic waves from the two channels, each of which is installed at the end of a pipeline. Finally, the time data are combined with the velocity data to localize the leak. The proposed approach has better performance than the existing generalized cross-correlation and empirical mode decomposition combined with the generalized cross-correlation methods, providing proper leak localization in the industrial pipeline.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献