Pipeline Monitoring Using Highly Sensitive Vibration Sensor Based on Fiber Ring Cavity Laser

Author:

Lalam NageswaraORCID,Lu Ping,Venketeswaran AbhishekORCID,Buric Michael P.

Abstract

A vibration fiber sensor based on a fiber ring cavity laser and an interferometer based single-mode-multimode-single-mode (SMS) fiber structure is proposed and experimentally demonstrated. The SMS fiber sensor is positioned within the laser cavity, where the ring laser lasing wavelength can be swept to an optimized wavelength using a simple fiber loop design. To obtain a better signal-to-noise ratio, the ring laser lasing wavelength is tuned to the maximum gain region biasing point of the SMS transmission spectrum. A wide range of vibration frequencies from 10 Hz to 400 kHz are experimentally demonstrated. In addition, the proposed highly sensitive vibration sensor system was deployed in a field-test scenario for pipeline acoustic emission monitoring. An SMS fiber sensor is mounted on an 18” diameter pipeline, and vibrations were induced at different locations using a piezoelectric transducer. The proposed method was shown to be capable of real-time pipeline vibration monitoring.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3