Abstract
Diamond-like carbon (DLC) films have attracted considerable interest for application as protective films in diverse industrial parts. This is attributed to their desirable characteristics, such as high hardness, low coefficient of friction, gas-barrier properties, and corrosion resistance. Antiseizure properties, in addition to wear resistance, are required during the die molding of polymer and polymer-matrix composite parts. Graphite films can be easily peeled because the vertically stacked graphene sheets are bonded via weak van der Waals forces. The present study demonstrates the fabrication of multilayered DLC/Cu films, where the Cu film functions as a catalyst for the formation of a graphite-like layer between the DLC and Cu films. The DLC/Cu film was synthesized on a Si (100) substrate via plasma-enhanced chemical vapor deposition and magnetron sputtering. The peelability, wear resistance, microstructure, texture, and cross-section of the film were experimentally analyzed. The results indicated a variation in the peelability with the deposition conditions of the Cu film that comprised particles with diameters of several nanometers. The DLC film at the interface in contact with the Cu film was transformed into a graphite-like state i.e., graphitized. The surface of the multilayered film exhibited antiseizure properties with the peeling of the upper DLC film. The multilayered film also exhibited wear resistance owing to the repeated appearances of a new DLC film. It is expected that the wear-resistant films with antiseizure properties demonstrated in the present study will be utilized in various industrial sectors.
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献