Abstract
The article discusses test results concerning an innovative surface layer obtained using the cladding with powder plasma transferred arc welding (PPTAW) method. The above-named layer, being a metal matrix composite (MCM), is characterised by high abrasive wear resistance, resistance to pressure and impact loads, and the possibility of operation at elevated temperatures. The layer was made using powder in the form of a cobalt alloy-based composite reinforced with monocarbide TiC particles and superhard spherical particles of synthetic metal–diamond composite provided with tungsten coating. The surface layer was deposited on a sheet made of low-alloy structural steel grade AISI 4715. The layer is intended for surfaces of inserts of drilling tools used in the extraction industry. The results showed the lack of the thermal and structural decomposition of the hard layer reinforcing the matrix during the cladding process, its very high resistance to metal-mineral abrasive wear and its resistance to moderate impact loads. The abrasive wear resistance of the deposited layer with particles of TiC and synthetic metal–diamond composite was about than 140 times higher than the abrasive wear resistance of abrasion resistant heat-treated steel having a nominal hardness of 400 HBW. The use of diamond as a metal matrix reinforcement in order to increase the abrasive resistance of the PPTAW overlay layer is a new and innovative area of inquiry. There is no information related to tests concerning metal matrix surface layers reinforced with synthetic metal–diamond composite and obtained using PPTAW method.
Funder
The Silesian University of Technology Rector’s pro-quality grant and Rector’s habilitation grant
Subject
General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献