Microstructure and properties of Co based laser cladded composite coatings

Author:

Anghel Iasmina-Mădălina1,Uțu Ion-Dragoș1,Pascu Alexandru2,Hulka Iosif3,Woelk Dino Horst1,Mărginean Gabriela4

Affiliation:

1. Timisoara Faculty of Mechanical Engineering , 320371 Politehnica University , Timisoara 300222 , Romania

2. Materials Engineering and Welding Department , 113008 Transilvania University of Brasov , Brasov 505100 , Romania

3. Timisoara Research Institute for Renewable Energies , 562466 Politehnica University , Piaţa Victoriei Nr. 2 , Timisoara 300006 , Timiș , Romania

4. Institute of Mechanical Engineeri , Westphalian University of Applied Sciences Gelsenkirchen Bocholt Recklinghausen , Gelsenkirchen , Germany

Abstract

Abstract Coatings deposition using different materials and various techniques are a viable method to improve the surface properties of alloys, especially the surface strength with improved tribological properties. In this study, a series of Co-based reinforced composite coatings containing different ratios of WC–CoCr–Ni particles were fabricated by laser cladding onto the surface of an AISI 904L stainless steel substrate. The main goal of this experimental work was to determine the influence of the WC particle addition on the structure and properties of the obtained Co composite coating in terms of improving the sliding wear resistance without negative influence the corrosion resistance in chloride media. The effect of the WC particles onto the microstructure, phase composition, microhardness, wear and corrosion properties, was investigated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) in association with the evolution of the friction coefficient and that of the polarization curves, respectively. The achieved results have shown that the new phase composition, especially developed due to the remelting of the WC phase, led to an improvement of the wear resistance. No significant changes were recorded after the electrochemical tests evaluation.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3