The Remaining Useful Life Prediction Method of a Hydraulic Pump under Unknown Degradation Model with Limited Data

Author:

Wu Fenghe12,Tang Jun1,Jiang Zhanpeng1ORCID,Sun Yingbing12ORCID,Chen Zhen1,Guo Baosu12

Affiliation:

1. Department of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China

2. Heavy-Duty Intelligent Manufacturing Equipment Innovation Center of Hebei Province, Yanshan University, Qinhuangdao 066004, China

Abstract

This study proposes a remaining useful life (RUL) prediction method using limited degradation data with an unknown degradation model for hydraulic pumps with long service lives and no failure data in turbine control systems. The volumetric efficiency is calculated based on real-time monitoring signal data, and it is used as the degradation indicator. The optimal degradation curve is established using the degradation trajectory model, and the optimal probability distribution model is selected via the K-S test. The above process was repeated to optimize the degradation model and update parameters in different performance degradation stages of the hydraulic pump, providing quantification of the prediction uncertainty and enabling accurate online prediction of the hydraulic pump’s RUL. Finally, an RUL test bench for hydraulic pumps is built for verification. The results show that the proposed method is convenient, efficient, and has low model complexity. The method enables online accurate prediction of the RUL of hydraulic pumps using only limited degradation data, with a prediction accuracy of over 85%, which meets practical application requirements.

Funder

National Natural Science Foundation of China

Science and Technology Project of Hebei Education Department

Scientific Research Program for Young Outstanding Talent of Higher Education of Hebei Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3