Affiliation:
1. China Productivity Center for Machinery Co., Ltd., Beijing, China
2. China Academy of Machinery Science and Technology Group Co., Ltd., Beijing, China
Abstract
Scholars and engineers attach great importance to fault detection in mechanical systems due to the unpredictable faults that arise from long-term operations under complex and extreme conditions. The fact that each type of fault embodies unique characteristics makes it challenging to obtain sufficient fault samples, and conventional machine learning methods fail to provide satisfactory fault diagnosis results. To address this issue, a simulation-driven fault detection method has been proposed in this paper. Firstly, the DT model of the gear transmission system was established. An improved multi-objective sparrow search algorithm (MOSSA) was employed to update the model and obtain an adequate number of simulation fault samples as well. Secondly, a two-stage adversarial domain adaptation model with full-scale feature fusion (ADAM-FF) was utilized to align and integrate the features of simulated and generated fault samples. This enables model training and classification of combined samples, facilitating the detection of unknown faults in actual measurements. Lastly, a simulation-driven equipment health index assessment model which accurately and non-destructively evaluates the degradation status of the equipment was introduced. This model effectively quantifies the extent of equipment degradation, thereby facilitating the transfer from the simulation realm to practical engineering applications. To validate the effectiveness of the proposed fault detection method, an experimental study was conducted on the extruder gear reducer of a petrochemical enterprise. The proposed fault detection method has the potential for widespread application across a range of large-scale mechanical equipment. As such, the utilization of this method will enable proactive maintenance planning, ensure safe and stable equipment operations, and minimize energy loss.
Funder
the China Academy of Machinery Science and Technology Group Co., Ltd. for the “Major Equipment Gear Transmission Device Health Management and Control System and Intelligent Cloud Platform”
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献