Optimization of the Electrical Demand of an Existing Building with Storage Management through Machine Learning Techniques

Author:

Cordeiro-Costas MoisésORCID,Villanueva DanielORCID,Eguía-Oller PabloORCID

Abstract

Accurate prediction from electricity demand models is helpful in controlling and optimizing building energy performance. The application of machine learning techniques to adjust the electrical consumption of buildings has been a growing trend in recent years. Battery management systems through the machine learning models allow a control of the supply, adapting the building demand to the possible changes that take place during the day, increasing the users’ comfort, and ensuring greenhouse gas emission reduction and an economic benefit. Thus, an intelligent system that defines whether the storage system should be charged according to the electrical needs of that moment and the prediction of the subsequent periods of time is defined. Favoring consumption in the building in periods when energy prices are cheaper or the renewable origin is preferable. The aim of this study was to obtain a building electrical energy demand model in order to be combined with storage devices with the purpose of reducing electricity expenses. Specifically, multilayer perceptron neural network models were applied, and the battery usage optimization is obtained through mathematical modelling. This approach was applied to a public office building located in Bangkok, Thailand.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference54 articles.

1. Regulation 2018/842,2018

2. Directive 2018/844 of the European Parliament and of the Council of 30 May 2018,2018

3. Zero energy buildings and sustainable development implications – A review

4. 100 Climate-Neutral Cities by 2030—By and for the Citizens,2020

5. Strategies and scenarios to reduce energy consumption and CO2 emission in the urban, rural and sustainable neighbourhoods

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3