Load Forecasting with Machine Learning and Deep Learning Methods

Author:

Cordeiro-Costas Moisés1ORCID,Villanueva Daniel2,Eguía-Oller Pablo1,Martínez-Comesaña Miguel1,Ramos Sérgio3ORCID

Affiliation:

1. CINTECX, Universidade de Vigo, Rúa Maxwell s/n, 36310 Vigo, Spain

2. Universidade de Vigo, Industrial Engineering School, Rúa Maxwell s/n, 36310 Vigo, Spain

3. GECAD–Knowledge Engineering and Decision Support Research Center, Polytechnic of Porto, School of Engineering, Rúa Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal

Abstract

Characterizing the electric energy curve can improve the energy efficiency of existing buildings without any structural change and is the basis for controlling and optimizing building performance. Artificial Intelligence (AI) techniques show much potential due to their accuracy and malleability in the field of pattern recognition, and using these models it is possible to adjust the building services in real time. Thus, the objective of this paper is to determine the AI technique that best forecasts electrical loads. The suggested techniques are random forest (RF), support vector regression (SVR), extreme gradient boosting (XGBoost), multilayer perceptron (MLP), long short-term memory (LSTM), and temporal convolutional network (Conv-1D). The conducted research applies a methodology that considers the bias and variance of the models, enhancing the robustness of the most suitable AI techniques for modeling and forecasting the electricity consumption in buildings. These techniques are evaluated in a single-family dwelling located in the United States. The performance comparison is obtained by analyzing their bias and variance by using a 10-fold cross-validation technique. By means of the evaluation of the models in different sets, i.e., validation and test sets, their capacity to reproduce the results and the ability to properly forecast on future occasions is also evaluated. The results show that the model with less dispersion, both in the validation set and test set, is LSTM. It presents errors of −0.02% of nMBE and 2.76% of nRMSE in the validation set and −0.54% of nMBE and 4.74% of nRMSE in the test set.

Funder

Ministry of Science, Innovation and Universities of the Spanish Government

Universidade de Vigo

European Group for territorial cooperation Galicia-North of Portugal (GNP, AECT) through the IACOBUS program of research stays

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3