Transmission Line Fault-Cause Identification Based on Hierarchical Multiview Feature Selection

Author:

Jian Shengchao,Peng Xiangang,Yuan Haoliang,Lai Chun SingORCID,Lai Loi LeiORCID

Abstract

Fault-cause identification plays a significant role in transmission line maintenance and fault disposal. With the increasing types of monitoring data, i.e., micrometeorology and geographic information, multiview learning can be used to realize the information fusion for better fault-cause identification. To reduce the redundant information of different types of monitoring data, in this paper, a hierarchical multiview feature selection (HMVFS) method is proposed to address the challenge of combining waveform and contextual fault features. To enhance the discriminant ability of the model, an ε-dragging technique is introduced to enlarge the boundary between different classes. To effectively select the useful feature subset, two regularization terms, namely l2,1-norm and Frobenius norm penalty, are adopted to conduct the hierarchical feature selection for multiview data. Subsequently, an iterative optimization algorithm is developed to solve our proposed method, and its convergence is theoretically proven. Waveform and contextual features are extracted from yield data and used to evaluate the proposed HMVFS. The experimental results demonstrate the effectiveness of the combined used of fault features and reveal the superior performance and application potential of HMVFS.

Funder

National Natural Science Foundation of China

Science and Technology Project of China Southern Power Grid Company Limited

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3