A Two-Stage Feature Selection Method for Power System Transient Stability Status Prediction

Author:

Chen Zhen,Han Xiaoyan,Fan Chengwei,Zheng Tianwen,Mei Shengwei

Abstract

Transient stability status prediction (TSSP) plays an important role in situational awareness of power system stability. One of the main challenges of TSSP is the high-dimensional input feature analysis. In this paper, a novel two-stage feature selection method is proposed to handle this problem. In the first stage, the relevance between features and classes is measured by normalized mutual information (NMI), and the features are ranked based on the NMI values. Then, a predefined number of top-ranked features are selected to form the strongly relevant feature subset, and the remaining features are described as the weakly relevant feature subset, which can be utilized as the prior knowledge for the next stage. In the second stage, the binary particle swarm optimization is adopted as the search algorithm for feature selection, and a new particle encoding method that considers both population diversity and prior knowledge is presented. In addition, taking the imbalanced characteristics of TSSP into consideration, an improved fitness function for TSSP feature selection is proposed. The effectiveness of the proposed method is corroborated on the Northeast Power Coordinating Council (NPCC) 140-bus system.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3