Tuning the Proportional–Integral–Derivative Control Parameters of Unmanned Aerial Vehicles Using Artificial Neural Networks for Point-to-Point Trajectory Approach

Author:

Ulu Burak1ORCID,Savaş Sertaç1ORCID,Ergin Ömer Faruk2,Ulu Banu3,Kırnap Ahmet1ORCID,Bingöl Mehmet Safa14,Yıldırım Şahin1ORCID

Affiliation:

1. Department of Mechatronics Engineering, Erciyes University, 38039 Kayseri, Turkey

2. Department of Mechanical Engineering, Erciyes University, 38039 Kayseri, Turkey

3. Department of Software Engineering, Kayseri University, 38030 Kayseri, Turkey

4. Department of Mechatronics Engineering, Nigde Omer Halisdemir University, 51240 Nigde, Turkey

Abstract

Nowadays, trajectory control is a significant issue for unmanned micro aerial vehicles (MAVs) due to large disturbances such as wind and storms. Trajectory control is typically implemented using a proportional–integral–derivative (PID) controller. In order to achieve high accuracy in trajectory tracking, it is essential to set the PID gain parameters to optimum values. For this reason, separate gain values are set for roll, pitch and yaw movements before autonomous flight in quadrotor systems. Traditionally, this adjustment is performed manually or automatically in autotune mode. Given the constraints of narrow orchard corridors, the use of manual or autotune mode is neither practical nor effective, as the quadrotor system has to fly in narrow apple orchard corridors covered with hail nets. These reasons require the development of an innovative solution specific to quadrotor vehicles designed for constrained areas such as apple orchards. This paper recognizes the need for effective trajectory control in quadrotors and proposes a novel neural network-based approach to tuning the optimal PID control parameters. This new approach not only improves trajectory control efficiency but also addresses the unique challenges posed by environments with constrained locational characteristics. Flight simulations using the proposed neural network models have demonstrated successful trajectory tracking performance and highlighted the superiority of the feed-forward back propagation network (FFBPN), especially in latitude tracking within 7.52745 × 10−5 RMSE trajectory error. Simulation results support the high performance of the proposed approach for the development of automatic flight capabilities in challenging environments.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3