Evaluation of the GPM-IMERG Precipitation Product for Flood Modeling in a Semi-Arid Mountainous Basin in Morocco

Author:

Saouabe Tarik,El Khalki El MahdiORCID,Saidi Mohamed El MehdiORCID,Najmi AdamORCID,Hadri Abdessamad,Rachidi Said,Jadoud Mourad,Tramblay YvesORCID

Abstract

A new precipitation dataset is provided since 2014 by the Global Precipitation Measurement (GPM) satellite constellation measurements combined in the Integrated Multi-satellite Retrievals for GPM (IMERG) algorithm. This recent GPM-IMERG dataset provides potentially useful precipitation data for regions with a low density of rain gauges. The main objective of this study is to evaluate the accuracy of the near real-time product (IMERG-E) compared to observed rainfall and its suitability for hydrological modeling over a mountainous watershed in Morocco, the Ghdat located upstream the city of Marrakech. Several statistical indices have been computed and a hydrological model has been driven with IMERG-E rainfall to estimate its suitability to simulate floods during the period from 2011 to 2018. The following results were obtained: (1) Compared to the rain gauge data, satellite precipitation data overestimates rainfall amounts with a relative bias of +35.61% (2) In terms of the precipitation detection capability, the IMERG-E performs better at reproducing the different precipitation statistics at the catchment scale, rather than at the pixel scale (3) The flood events can be simulated with the hydrological model using both the observed and the IMERG-E satellite precipitation data with a Nash–Sutcliffe efficiency coefficient of 0.58 and 0.71, respectively. The results of this study indicate that the GPM-IMERG-E precipitation estimates can be used for flood modeling in semi-arid regions such as Morocco and provide a valuable alternative to ground-based precipitation measurements.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3