Modeling run-off flow hydrographs using remote sensing data: an application to the Bashar basin, Iran

Author:

Rafiee Mohammad Rafie1,Rad Sattar1,Mahbod Mehdi1,Zolghadr Masih1ORCID,Tripathi Ravi Prakash2,Azamatulla H. Md.3

Affiliation:

1. a Department of Water Sciences & Engineering, College of Agriculture, Jahrom University, Jahrom 74137-66171, Iran

2. b Department of Civil Engineering, Rajkiya Engineering College Sonbhadra, Sonbhadra U.P. 231206, India

3. c University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago

Abstract

ABSTRACT Precipitation is hard to access in countries like Iran, due to inadequate number of rain gauge stations. Remote sensing provides an alternative source of rainfall estimation. In this study, the effectiveness of the HEC-HMS model was evaluated using GPM (Global Precipitation Measurement Mission) satellite and rain gauge station data. The model was calibrated and validated using 5 flood events' data of a hydrometric station at the outlet of Bashar basin. Important flood parameters including peak discharge (QP), flood volume (V) and time of concentration (TC) were used to evaluate and compare the application of satellite and ground station data in the model, using various statistical indices. The accuracy of QP and V estimations using rain gauge data was higher than those obtained by satellite data. However, the difference between mean relative error (MRE) in QP estimation was about 1% (9.9% and 10.6% for rain gauge and satellite data, respectively). Conversely, higher accuracies were met for TC estimation using satellite (with MRE 9.1% and 10.2% for GPM and rain gauge data, respectively). Such results imply the sole utilization of satellite precipitation data is reliable for modeling hydrological key parameters, which can be helpful in areas with limited ground station coverage.

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3