How Is the Intensity of Rainfall Events Best Characterised? A Brief Critical Review and Proposed New Rainfall Intensity Index for Application in the Study of Landsurface Processes

Author:

Dunkerley David

Abstract

In many studies of landsurface processes, the intensity of rainfall events is expressed with clock-period indexes such as I30, the wettest 30-minute interval within a rainfall event. Problematically, the value of I30 cannot be estimated for rainfall events shorter than 30 min, excluding many intense convective storms. Further, it represents a diminishing proportion of increasingly long rainfall events, declining to <2% of the duration of a 30-hour event but representing 25% of the duration of a two-hour event. Here, a new index termed EDf5 is proposed: It is the rainfall depth in the wettest 5% of the event duration. This can be derived for events of any duration. Exploratory determinations of EDf5 are presented for two Australian locations with contrasting rainfall climatologies—one arid and one wet tropical. The I30 index was similar at both sites (7.7 and 7.9 mm h−1) and was unable to differentiate between them. In contrast, EDf5 at the arid site was 7.4 mm h−1, whilst at the wet tropical site, it was 3.8 mm h−1. Thus, the EDf5 index indicated a greater concentration of rain at the arid site where convective storms occurred (i.e., the intensity sustained for 5% of event duration at that site is higher). The EDf5 index can be applied to short, intense events that can readily be included in the analysis of event-based rainfall intensity. I30 therefore appears to offer less discriminatory power and consequently may be of less value in the investigation of rainfall characteristics that drive many important landsurface processes.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3