Minimum Rainfall Inter-Event Time to Separate Rainfall Events in a Low Latitude Semi-Arid Environment

Author:

Brasil José Bandeira,Guerreiro Maria SimasORCID,Andrade Eunice Maia de,de Queiroz Palácio Helba Araújo,Medeiros Pedro Henrique AugustoORCID,Ribeiro Filho Jacques CarvalhoORCID

Abstract

Water scarcity in dry tropical regions is expected to intensify due to climate change. Characterization of rainfall events is needed for a better assessment of the associated hydrological processes, and the proposition of adaptation strategies. There is still no consensus on the most appropriate method to separate rainfall events from a continuous database, although the minimum inter-event time (MIET) is a commonly used criterion. Semi-arid regions of low latitudes hold a distinct rainfall pattern compared to their equivalent at higher latitudes; these seasonally dry tropical forests experience strong spatial–temporal variability with intense short-duration rainfall events, which, in association with high energy surplus and potential evaporation, leads to an atmospheric water deficit. In this study, we identified the most adequate MIET based on rainfall data continuously measured at 5-min intervals over the last decade (2009–2020) in the semi-arid northeast of Brazil. The rainfall events were grouped according to different MIETs: 15 min, 1 h, 2 h, 3 h, 6 h, 12 h, and 24 h to determine rainfall depth, duration and intensity at intervals of 5, 30, and 60 min, time between events, and respective temporal distribution, with and without single tip events. Including single tip events in the dataset affected the number of rainfall events and respective characteristics up to a MIET of 3 h. A MIET of 6 h is the most appropriate to characterize the rainfall distribution in this tropical semi-arid region. Three classes were defined based on rainfall depth, duration, and intensity: I-small events (77% below 40 mm and 32 mm/h), II-high intensity events (3% between 36 and 76 mm/h), III-longer events of higher depth (20%). This study is useful for understanding how the MIET relates to other ecohydrological processes and provides more precise information on the rainfall characteristics at the event scale.

Funder

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3