Firefighting Water Jet Trajectory Detection from Unmanned Aerial Vehicle Imagery Using Learnable Prompt Vectors

Author:

Cheng Hengyu1,Zhu Jinsong123,Wang Sining1,Yan Ke1,Wang Haojie1

Affiliation:

1. School of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou 221006, China

2. China Academy of Safety Science and Technology, Beijing 100012, China

3. Shenzhen Research Institute of China University of Mining and Technology, Shenzhen 518057, China

Abstract

This research presents an innovative methodology aimed at monitoring jet trajectory during the jetting process using imagery captured by unmanned aerial vehicles (UAVs). This approach seamlessly integrates UAV imagery with an offline learnable prompt vector module (OPVM) to enhance trajectory monitoring accuracy and stability. By leveraging a high-resolution camera mounted on a UAV, image enhancement is proposed to solve the problem of geometric and photometric distortion in jet trajectory images, and the Faster R-CNN network is deployed to detect objects within the images and precisely identify the jet trajectory within the video stream. Subsequently, the offline learnable prompt vector module is incorporated to further refine trajectory predictions, thereby improving monitoring accuracy and stability. In particular, the offline learnable prompt vector module not only learns the visual characteristics of jet trajectory but also incorporates their textual features, thus adopting a bimodal approach to trajectory analysis. Additionally, OPVM is trained offline, thereby minimizing additional memory and computational resource requirements. Experimental findings underscore the method’s remarkable precision of 95.4% and efficiency in monitoring jet trajectory, thereby laying a solid foundation for advancements in trajectory detection and tracking. This methodology holds significant potential for application in firefighting systems and industrial processes, offering a robust framework to address dynamic trajectory monitoring challenges and augment computer vision capabilities in practical scenarios.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the China Academy of Safety Science and Technology

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3