Effect of the ZnSnO/AZO Interface on the Charge Extraction in Cd-Free Kesterite Solar Cells

Author:

Gobbo Carla1,Di Palma Valerio1ORCID,Trifiletti Vanira1ORCID,Malerba Claudia2ORCID,Valentini Matteo2,Matacena Ilaria3ORCID,Daliento Santolo3,Binetti Simona1ORCID,Acciarri Maurizio1ORCID,Tseberlidis Giorgio1ORCID

Affiliation:

1. Department of Materials Science and Solar Energy Research Center (MIB-SOLAR), University of Milano-Bicocca, Via Cozzi 55, 20125 Milano, Italy

2. ENEA (Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile) C.R. CASACCIA, Via Anguillarese 301, 00123 Roma, Italy

3. Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Corso Umberto I 40, 80138 Napoli, Italy

Abstract

Cu2ZnSnS4 (CZTS) is a promising absorber material to produce thin film solar cells thanks to its high absorption coefficient, low cost and low toxicity. CdS is commonly used as a buffer layer for CZTS solar cells but, beyond its toxicity, it has a nonoptimal band alignment with CZTS. ZnxSn1−xO (ZTO), based on earth-abundant and nontoxic elements and with a large and tunable band gap, is a suitable alternative buffer layer. In this paper, the atomic layer deposition (ALD) of ZTO was employed by testing different compositions and thicknesses. ALD not only leads to very compact and homogenous ZTO layers (enabling tuning the stoichiometry of the ZTO so prepared) but also makes the i-ZnO layer (usually sandwiched between the buffer layer and the transparent contact) redundant and detrimental. Through SCAPS simulation and impedance measurements, the ZnSnO/AZO interface impact on the Cd-free kesterite solar cells’ performances has been investigated, highlighting its leading role in achieving an effective charge extraction and the detrimental effect of the i-ZnO layer. With this approach, a solar cell based on an architecture simpler and more eco-friendly than the conventional one has been produced with comparable efficiencies.

Funder

Italian Ministry of Economic Development in the framework of the Operating Agreement with ENEA for Research on the Electric System

University of Milano-Bicocca

the Italian Ministry MIUR

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3