Enhanced Efficiency of Thin‐Film Solar Cells via Cation‐Substituted Kesterite Absorber Layers and Nontoxic Buffers: A Numerical Study

Author:

Gururajan Balaji1ORCID,Posha Atheek2,Liu Wei‐Sheng1ORCID,Kondapavuluri Bhavya1,Abhishek Tarikallu Thippesh3,Thathireddy Perumal3,Narasihman Venkatesh4

Affiliation:

1. Department of Electrical Engineering Yuan Ze University Chung‐Li Dist. Taoyuan 32003 Taiwan

2. Ceramic Processing Lab Department of Physics PSG College of Technology Coimbatore 641004 India

3. Department of Electrical and Electronics Engineering Presidency University Bangalore 560064 India

4. School of Electrical and Electronics Engineering SASTRA Deemed University Thanjavur 613401 India

Abstract

Herein, the 1D Solar Cell Capacitance Simulator software is used to perform numerical analysis of thin‐film solar cells with Cu2ZnSnS4, Cu2BaSnS4, Cu2FeSnS4, and Cu2MnSnS4 absorber layers. The main goal is to investigate the impact of parameters, such as absorber layer thickness, acceptor density, buffer layer, bandgap, and donor density, on the efficiency of these solar cells. The absorber layer investigation entails varying the thickness and the acceptor density to evaluate their influence on the efficiency of the solar cell. A new zinc oxide sulfide (Zn(O,S)) buffer layer is also introduced instead of the conventional cadmium sulfide (CdS) buffer layer. The Zn(O,S) bandgap and its donor density, which are investigated in terms of how they affect the efficiency of the solar cells, have been varied. The optimal values for the thickness of the absorber layer, acceptor density, and the bandgap of the buffer layer are calculated. Subsequently, the donor density is evaluated to find any potential defects that may affect the efficiency of the solar cell. These results confirm that Zn(O,S) can be utilized as a buffer layer. This study concludes that Cu2ZnSnS4, Cu2BaSnS4, and Cu2MnSnS4 absorber layers have superior efficiency in comparison with Cu2FeSnS4.

Funder

National Science and Technology Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3