Distributed Edge Computing to Assist Ultra-Low-Latency VANET Applications

Author:

Vladyko AndreiORCID,Khakimov Abdukodir,Muthanna AmmarORCID,Ateya Abdelhamied A.ORCID,Koucheryavy Andrey

Abstract

Vehicular ad hoc networks (VANETs) are a recent class of peer-to-peer wireless networks that are used to organize the communication and interaction between cars (V2V), between cars and infrastructure (V2I), and between cars and other types of nodes (V2X). These networks are based on the dedicated short-range communication (DSRC) IEEE 802.11 standards and are mainly intended to organize the exchange of various types of messages, mainly emergency ones, to prevent road accidents, alert when a road accident occurs, or control the priority of the roadway. Initially, it was assumed that cars would only interact with each other, but later, with the advent of the concept of the Internet of things (IoT), interactions with surrounding devices became a demand. However, there are many challenges associated with the interaction of vehicles and the interaction with the road infrastructure. Among the main challenge is the high density and the dramatic increase of the vehicles’ traffic. To this end, this work provides a novel system based on mobile edge computing (MEC) to solve the problem of high traffic density and provides and offloading path to vehicle’s traffic. The proposed system also reduces the total latency of data communicated between vehicles and stationary roadside units (RSUs). Moreover, a latency-aware offloading algorithm is developed for managing and controlling data offloading from vehicles to edge servers. The system was simulated over a reliable environment for performance evaluation, and a real experiment was conducted to validate the proposed system and the developed offloading method.

Funder

Ministry of Education and Science of the Russian Federation

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference39 articles.

1. Scenarios for 5G mobile and wireless communications: the vision of the METIS project

2. 5G roadmap: 10 key enabling technologies

3. ITU-T Technology Watch Reporthttps://www.itu.int/dms_pub/itu-t/opb/gen/T-GEN-TWATCH-2014-1-PDF-E.pdf

4. Feasibility Study on New Services and Markets Technology Enablers for Critical Communications,2016

5. IMT Vision—Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyondhttps://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3