Numerical Study on Influences of Drag Reducing Additive in Supercritical Flow of Kerosene in a Millichannel

Author:

Li Biao,Li Wenxi,Zheng Xin,Wang Yue,Tang Mingming,Cai Weihua

Abstract

To improve the performance of a high-pressure refueling liquid oxy-kerosene engine, the influence of drag-reducing additive on the heat transfer characteristics in the supercritical flow of kerosene in a microchannel for regenerative cooling is explored. The finite-volume CFD numerical simulation method is applied using the RNG k-ε turbulence model and enhanced wall function. The current work faithfully represents the effect of the drag-reducing additive in kerosene through numerical calculations by combining a 10-component model for the physical properties of the kerosene and the Carreau non-Newtonian fluid constitutive model from rheological measurements. Results suggest that the 10-component kerosene surrogate can describe the supercritical physical properties of kerosene. The inlet temperature, inlet velocity, and the heat flux on the channel wall are driving factors for the supercritical kerosene flow and heat transfer characteristics. The pressure influence on the heat transfer is negligible. With polymer additives, the loss in pressure drop and heat transfer performance of supercritical kerosene flow decrease 46.8% and 37.5% respectively. The enhancement of engine thrust caused by reduction in pressure drop is an attractive improvement of concern.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3