Effect of Polymer Drag Reducer on Rheological Properties of Rocket Kerosene Solutions

Author:

Guo Xiaodie,Chen Xuejiao,Zhou Wenjing,Wei Jinjia

Abstract

Adding drag reduction agent (DRA) to rocket kerosene is an effective way to reduce the pipeline resistance of rocket kerosene transportation systems. However, so far, there have been few research reports on the effect of DRA on the rheological properties of rocket kerosene solution, especially from a microscopic perspective. In this study, coarse-grained molecular dynamics simulations were conducted to investigate the rheological properties of rocket kerosene solutions with DRAs of different chain lengths and concentrations. The results showed that the viscosity of DRA—kerosene solution is generally higher than that of pure kerosene at a low shear rate, while with an increase in shear rate, the viscosity of DRA—kerosene solution decreases rapidly and finally tends to become similar to that of pure kerosene. The shear viscosity of DRA—kerosene solution increases with an increase in chain length and concentration of polymers. Through observing the morphologic change of DRA molecules and analyzing the radius of gyration and the mean-squared end-to-end distance of polymers, it was confirmed that the rheological properties of DRA—kerosene solutions are strongly related to the degree of entanglement of polymer chains. The simulation results provide microscopic insights into the rheological behavior of DRA—kerosene solutions and clarify the intrinsic relation between the morphologic change of polymer molecules and the rheological properties of DRA—kerosene solutions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Reference44 articles.

1. The development characteristics and trends of heavy launch vehicles;Qin;Aerosp. China,2018

2. History of Liquid Propellant Rocket Engines in the United States

3. Flow and heat transfer characteriatics of low-flow resistance rocket kerosene under supercritical pressure;Zhang;J. Xi’an Jiaotong Univ.,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3