Comparison of Two Energy Management System Strategies for Real-Time Operation of Isolated Hybrid Microgrids

Author:

Azuara-Grande Luis SantiagoORCID,Arnaltes SantiagoORCID,Alonso-Martinez JaimeORCID,Rodriguez-Amenedo Jose LuisORCID

Abstract

The propagation of hybrid power systems (solar–diesel–battery) has led to the development of new energy management system (EMS) strategies for the effective management of all power generation technologies related to hybrid microgrids. This paper proposes two novel EMS strategies for isolated hybrid microgrids, highlighting their strengths and weaknesses using simulations. The proposed strategies are different from the EMS strategies reported thus far in the literature because the former enable the real-time operation of the hybrid microgrid, which always guarantees the correct operation of a microgrid. The priority EMS strategy works by assigning a priority order, while the optimal EMS strategy is based on an optimization criterion, which is set as the minimum marginal cost in this case. The results have been obtained using MATLAB/Simulink to verify and compare the effectiveness of the proposed strategies, through a dynamic microgrid model to simulate the conditions of a real-time operation. The differences in the EMS strategies as well as their individual strengths and weaknesses, are presented and discussed. The results show that the proposed EMS strategies can manage the system operation under different scenarios and help power system operator obtain the optimal operation schemes of the microgrid.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference31 articles.

1. Renewable Energy in Hybrid Mini-Grids and Isolated Grids: Economic Benefits and Business Cases;Al-Hammad,2015

2. Pacific Lighthouses: Hybrid Power Systems,2013

3. Hybrid Microgrids: The Time is Now;Saury,2016

4. The Power to Change: Solar and Wind Cost Reduction Potential to 2025,2016

5. A Review of Hybrid Renewable/Alternative Energy Systems for Electric Power Generation: Configurations, Control, and Applications

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3