Coordinated Control of the Hybrid Electric Ship Power-Based Batteries/Supercapacitors/Variable Speed Diesel Generator

Author:

Camara Mamadou Baïlo1ORCID,Dakyo Brayima1ORCID

Affiliation:

1. GREAH-Laboratory, Faculty of Technical Sciences, University of Le Havre Normandie, 75 Rue Bellot, 76600 Le Havre, France

Abstract

A Hybrid Electric Ship (HES) is investigated in this work to improve its dynamic response to sudden power demand changes. The HES system is based on a Variable-Speed Diesel Generator (VSDG) used for long-term energy supply, with Two Energy Storage Systems (TESSs) using Batteries and supercapacitors for transient power supply. The TESS mitigates the power demand fluctuations and reduces its impact on VSDG, which is linked to a DC-bus through a controlled rectifier. Batteries and Supercapacitors (SCs) are connected in a DC-bus using the bidirectional DC/DC converters to manage the transient and fluctuating components. Two thrusters (one in the front and the second in the back of the Ship) are considered for the propulsion system. The HES power demand includes the requirement of the thrusters and embedded power consumers (elevator, package lifting, air conditioning, onboard electronics devices, etc.). The highlight of this paper is based on the HES fast response improvement in sudden power demand situations via TESS-based batteries and supercapacitors. The other highlight concerns the SCs’ electrothermal modeling using an extension of the SCs’ current ripples’ frequency range (0 to 1 kHz), considering parameter evolution according to using the temperature and current waveform. This energy management-based dynamic power component separation method is tested via simulations using a variable operating temperature scenario.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3