Model and Data-Driven Combination: A Fault Diagnosis and Localization Method for Unknown Fault Size of Quadrotor UAV Actuator Based on Extended State Observer and Deep Forest

Author:

Song JiaORCID,Shang Weize,Ai Shaojie,Zhao KaiORCID

Abstract

The rotor is an essential actuator of quadrotor UAV, and is prone to failure due to high speed rotation and environmental disturbances. It is difficult to diagnose rotor faults and identify the fault localization simultaneously. In this paper, we propose a fault diagnosis and localization scheme based on the Extended State Observer (ESO) and Deep Forest (DF). This scheme can accurately complete the fault diagnosis and localization for the quadrotor UAV actuator without knowing the fault size by combining the model-based and the data-driven methods. First, we obtain the angular acceleration residual signal of the quadrotor UAV by using ESO. The residual signal is the difference between the observed state of ESO and the true fault state. Then, we design the residual feature analysis method by considering the position distribution of the quadrotor UAV actuator. This method can embed the actuator fault localization information into the fault data by simultaneously considering pitch and roll of the quadrotor UAV. Finally, we complete the fault diagnosis and localization of the quadrotor UAV actuator by processing the fault data by using DF. This scheme has the advantages of straightforward observer modeling, strong generalization ability, adaptability to small sample data, and few hyperparameters. Our simulation results indicate that the accuracy of the proposed scheme reaches more than 99% for the unknown size of the quadrotor UAV actuator fault.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3