Fault diagnosis of drone motors driven by current signal data with few samples

Author:

Chen GuanglinORCID,Li Shaobo,He Qiuchen,Zhou Peng,Zhang Qianfu,Yang Guilin,Lv Dongchao

Abstract

Abstract Multi rotor unmanned aerial vehicles (UAVs) are extensively utilized across various domains, and the motor constitutes a pivotal element in the UAV power system. The majority of UAV failures and crashes stem from motor malfunctions, underscoring the imperative need for comprehensive research on fault diagnosis in UAV motors to ensure the stable and reliable execution of flight tasks. This study focuses on quadrotor UAVs as the research subject and devises targeted fault simulation experiments based on the structural features and operational characteristics of the DC brushless motor used in quadrotor UAVs, specifically examining the stator, rotor, and bearings. To address challenges related to the UAV’s own loads, limited space for redundant parts, and the high cost and difficulty associated with installing sensors for traditional fault diagnostic signals such as vibration and temperature, this study opts to use current signals as a substitute. This approach resolves the issue of challenging data collection for UAVs and investigates a current signal based fault diagnosis method for UAV motors. Lastly, in response to the limited training samples available for fault data due to the UAV’s highly sensitive characteristics regarding the health status of its components and flight stability, traditional machine learning and deep learning methods encounter difficulties in identifying representative features with a small number of training samples, leading to the risk of overfitting and reduced model accuracy in fault diagnosis. To overcome this challenge, we propose a hybrid neural network fault diagnosis model that incorporates a width learning system and a convolutional neural network (CNN). The width learning system eliminates temporal characteristics from the original current signal, capturing more comprehensive and representative sample features in the width feature space. Subsequently, the CNN is employed for feature extraction and classification tasks. In empirical small sample fault diagnosis experiments using current signal data for UAV motors, our proposed model outperforms other models used for comparison.

Funder

Qiankehe platform talents

Research and Development Program of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3