Affiliation:
1. School of Civil Engineering, Central South University, Changsha 410075, China
Abstract
The compaction quality of asphalt surface courses has a significant impact on the overall performance of asphalt pavements, but the dynamic response and compaction degree variations of different asphalt surface courses (top, middle, and bottom surface courses) during vibrational compaction have still received limited research. SmartRock sensors can be utilized to monitor aggregate acceleration in real-time. This study aims to address this gap using SmartRock sensor technology to further understand the compaction mechanisms of different asphalt surface courses from a particle perspective, as well as the relationship between aggregate acceleration and compaction degree. The results indicate that the rolling of steel drums induces a significant alteration of the aggregate acceleration along the roller’s rolling direction, primarily resulting in horizontal shearing in that direction. As distance increases, vibration waves gradually attenuate on both sides of vibrating drums, and surface course thickness and gradation significantly affect acceleration amplitude. There is a linear correlation between triaxial aggregate acceleration and compaction degree, with the vertical correlation being the strongest. Finally, an empirical relationship between triaxial acceleration and pavement compaction degree was established, providing a basis for predicting the asphalt surface course density. These findings enhance our understanding of pavement compaction mechanisms and promote innovation in asphalt pavement compaction and quality control methods.
Funder
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献