Investigation of Particle Rotation Characteristics and Compaction Quality Control of Asphalt Pavement Using the Discrete Element Method

Author:

Zhang Zhi1,Dan Hancheng1ORCID,Shan Hongyu1,Li Songlin1

Affiliation:

1. School of Civil Engineering, Central South University, Changsha 410075, China

Abstract

The compaction of asphalt pavement is a crucial step to ensure its service life. Although intelligent compaction technology can monitor compaction quality in real time, its application to individual asphalt surface courses still faces limitations. Therefore, it is necessary to study the compaction mechanism of asphalt pavements from the particle level to optimize intelligent compaction technology. This study constructed an asphalt pavement compaction model using the Discrete Element Method (DEM). First, the changes in pavement smoothness during the compaction process were analyzed. Second, the changes in the angular velocity of the mixture and the triaxial angular velocity (TAV) of the mortar, aggregates, and mixture during vibratory compaction were examined. Finally, the correlations between the TAV amplitude and the coordination number (CN) amplitude with the compaction degree of the mixture were investigated. This study found that vibratory compaction can significantly reduce asymmetric wave deformation, improving pavement smoothness. The mixture primarily rotates in the vertical plane during the first six passes of vibratory compaction and within the horizontal plane during the seventh pass. Additionally, TAV reveals the three-dimensional dynamic rotation characteristics of the particles, and the linear relationship between its amplitude and the pavement compaction degree aids in controlling the compaction quality of asphalt pavements. Finally, the linear relationship between CN amplitude and pavement compaction degree can predict the stability of the aggregate structure. This study significantly enhances quality control in pavement compaction and advances intelligent compaction technology development.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3