Study on the Thermophysical Properties of 80% 10B Enrichment of B4C

Author:

Lv Zhipeng1,Hu Haixiang1,Cao Jin1,Lin Shaofang1,Li Changzheng1,Nie Lihong1,Zhou Xuanpu1,Ren Qisen1,Lv Qingyang1,Hu Jing1

Affiliation:

1. China Nuclear Power Technology Research Institute Co., Ltd., Shenzhen 518000, China

Abstract

In this paper, a specific type of Boron Carbide (B4C) with a high enrichment of 80 ± 0.3 at% 10B was prepared as an absorbing material for control rods in nuclear reactors. The enrichment of 10B was achieved using a chemical exchange method, followed by obtaining boron carbide powder through a carbothermal reduction method. Finally, B4C with a high enrichment of 68.3~74.2% theoretical density was obtained using a hot-pressed sintering process. This study focused on investigating the basic out-of-pile thermophysical properties of the high enrichment B4C compared to natural B4C reference pellets under non-irradiated conditions. These properties included the thermal expansion coefficient, thermal conductivity, emissivity, elastic limit, elastic modulus, and Poisson’s ratio. The research results indicate that the enriched B4C pellet exhibits good thermal stability and meets the technical requirements for mechanical capability. It was observed that porosity plays a significant role in determining the out-of-pile mechanical capability of B4C, with higher porosity samples having a lower thermal conductivity, elastic–plastic limit, and elastic modulus. In short, all the technical indexes studied meet the requirements of nuclear-grade Boron Carbide pellets for Pressurized Water Reactors.

Funder

China Nuclear Power Technology Research Institute Co., Ltd

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3