Local Structural Modifications in Metallic Micropillars Induced by Plasma Focused Ion Beam Processing

Author:

Singh Kritika1,Rout Surya Snata23,Krywka Christina1,Davydok Anton1

Affiliation:

1. Institute of Material Physics, Hemholtz-Zentrum Hereon, Outstation at DESY Notkestr 85, 22607 Hamburg, Germany

2. School of Earth and Planetary Sciences, National Institute of Science Education and Research, HBNI, Jatani 752050, India

3. Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India

Abstract

A focused ion beam scanning electron microscope (FIB-SEM) is a powerful tool that is routinely used for scale imaging from the micro- to nanometer scales, micromachining, prototyping, and metrology. In spite of the significant capabilities of a FIB-SEM, there are inherent artefacts (e.g., structural defects, chemical interactions and phase changes, ion implantation, and material redeposition) that are produced due to the interaction of Ga+ or other types of ions (e.g., Xe+, Ar+, O+, etc.) with the sample. In this study, we analyzed lattice distortion and ion implantation and subsequent material redeposition in metallic micropillars which were prepared using plasma focus ion beam (PFIB) milling. We utilized non-destructive synchrotron techniques such as X-ray fluorescence (XRF) and X-ray nanodiffraction to examine the micropillars prepared using Xe+ ion energies of 10 keV and 30 keV. Our results demonstrate that higher Xe ion energy leads to higher density of implanted ions within the redeposited and milled material. The mixing of ions in the redeposited material significantly influences the lattice structure, causing deformation in regions with higher ion concentrations. Through an X-ray nanodiffraction analysis, we obtained numerical measurements of the strain fields induced in the regions, which revealed up to 0.2% lattice distortion in the ion bombardment direction.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3