Abstract
The variable stiffness exosuit has great potential for human augmentation and medical applications. However, the model of the variable stiffness mechanism in exosuits is far from satisfactory for the accurate prediction and control of friction force. This paper presents a friction prediction model of a variable stiffness lower limb exosuit, verifies its prediction performance, and identifies its applicability. The friction force model was established by the Coulomb friction hypothesis. The equivalent coefficient, which is the core parameter of the model, was determined based on friction and squeezing force data obtained by tests and an ANSYS simulation. Experiments show that the prediction error of the proposed model can reach 15% with a proper structural dimension change constraint. The friction force control test showed that the achieved model can shorten the settling time of the step response by 26% and eliminate the steady-state error. Verifications indicate that the proposed method can provide guidance to the modeling of other friction/stiffness structures, especially friction-based wearable robot structure models and predictions.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Subject
Control and Optimization,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献