Analysis of Mechanical Excavation Characteristics by Pre-Cutting Machine Based on Linear Cutting Tests

Author:

Kim Han-eolORCID,Ha Sang-gui,Rehman Hafeezur,Yoo Han-kyu

Abstract

Mechanical methods of tunnel excavation are widely used because of their high excavation output, and the selection of appropriate technology depends on ground composition and project-related features. Compared with tunnel boring machines (TBMs) and roadheaders, mechanical pre-cutting machines are used in tunnel widening and have proven to be reliable in tunnel capacity expansion. Compared to other machines, the excavation characteristics of pre-cutting machines are not systematically analyzed because of their rare use. In this study, the excavation characteristics of a pre-cutting machine are analyzed in a laboratory based on linear cutting tests performed on four rock specimens with different uniaxial compressive strengths. During testing, changes in tool forces, cutting volume, and specific energy are determined while maintaining different penetration depths, spacings, and rock strengths. The variations in these variables are selected accordingly. The results showed high similarity with the case of TBMs and roadheaders. However, in the excavation by the pre-cutting machine, the ratios of the peak-to-mean cutting forces and cutting-to-normal forces reached a maximum value at a specific s/p (spacing and penetration ratio), which is related to the optimal cutting conditions. This study can provide useful information for the operation and design of pre-cutting machines.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

1. Numerical evaluation of new Austrian tunneling method excavation sequences: A case study;Rehman;Int. J. Min. Sci. Technol.,2020

2. Rehman, H., Naji, A.M., Nam, K., Ahmad, S., Muhammad, K., and Yoo, H.-K. (2021). Impact of Construction Method and Ground Composition on Headrace Tunnel Stability in the Neelum–Jhelum Hydroelectric Project: A Case Study Review from Pakistan. Appl. Sci., 11.

3. Richart, F.E., Hall, J.R., and Woods, R.D. (1970). Vibrations of Soils and Foundations, Prentice-Hall.

4. Santamarina, J.C., Klein, K.A., and Fam, M.A. (2001). Soils and Waves, John Wiley & Sons.

5. The mechanical pre-cutting method;Bougard;Tunn. Undergr. Space Technol.,1988

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3