Skin Cancer Classification Framework Using Enhanced Super Resolution Generative Adversarial Network and Custom Convolutional Neural Network

Author:

Mukadam Sufiyan Bashir,Patil Hemprasad Yashwant

Abstract

Melanin skin lesions are most commonly spotted as small patches on the skin. It is nothing but overgrowth caused by melanocyte cells. Skin melanoma is caused due to the abnormal surge of melanocytes. The number of patients suffering from skin cancer is observably rising globally. Timely and precise identification of skin cancer is crucial for lowering mortality rates. An expert dermatologist is required to handle the cases of skin cancer using dermoscopy images. Improper diagnosis can cause fatality to the patient if it is not detected accurately. Some of the classes come under the category of benign while the rest are malignant, causing severe issues if not diagnosed at an early stage. To overcome these issues, Computer-Aided Design (CAD) systems are proposed which help to reduce the burden on the dermatologist by giving them accurate and precise diagnosis of skin images. There are several deep learning techniques that are implemented for cancer classification. In this experimental study, we have implemented a custom Convolution Neural Network (CNN) on a Human-against-Machine (HAM10000) database which is publicly accessible through the Kaggle website. The designed CNN model classifies the seven different classes present in HAM10000 database. The proposed experimental model achieves an accuracy metric of 98.77%, 98.36%, and 98.89% for protocol-I, protocol-II, and protocol-III, respectively, for skin cancer classification. Results of our proposed models are also assimilated with several different models in the literature and were found to be superior than most of them. To enhance the performance metrics, the database is initially pre-processed using an Enhanced Super Resolution Generative Adversarial Network (ESRGAN) which gives a better image resolution for images of smaller size.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3