Characteristics, Dynamic Analyses and Hazard Assessment of Debris Flows in Niumiangou Valley of Wenchuan County

Author:

Yang ZhiquanORCID,Zhao Xuguang,Chen Mao,Zhang Jie,Yang Yi,Chen Wentao,Bai Xianfu,Wang Miaomiao,Wu Qi

Abstract

Niumiangou valley, the epicenter of the 12 May 2008 Wenchuan earthquake (MS 8.0), became an area with frequent and dense debris flow disasters post-earthquake. Based on the in situ investigations after the earthquake on 14 August 2010 and a series of gathered data, characteristics and dynamic analyses of post-earthquake debris flows in Niumiangou valley were conducted, and then their hazard degree was assessed. Some research conclusions are obtained: (1) these post-earthquake debris flows have some typical characteristics, such as rainstorm viscous-type debris flow, happening usually between 11 p.m. and 5 a.m., broken out in the main channel as well as six branch gullies at the same time and also induced in the branches with good vegetation; (2) the dynamic parameters of Niumiangou debris flow (including volumetric weight, velocity, peak discharge, impact force, total amount of debris flow, total amount of solid materials washed out by single debris flow, maximum height of the debris flow rises and super elevation in bend) are relatively significant, and due to which it can be indicated that these debris flow disasters have great destructive power and harmfulness; (3) the hazard degree of debris flow in Niumiangou valley is very high, compared with the debris flows that occurred in the years of 2008 and 2013 in Niumiangou valley post-Wenchuan earthquake, and the comparison result shows that the hazard degree of debris flow in Niumiangou valley is relatively higher, which is consistent with the current situation. Therefore, according to these results, debris flows in Niumiangou valley are in the development phase and large-scale rainfall-induced debris flow disasters, with greater damage and stronger wallop, will easily occur in the rainy seasons of the 20 years after the earthquake.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3