Accurate and Intelligent Early Warning Method of Debris Flow Formation Based on IGWO-LSTM Algorithm
Author:
Zhu Cheng1, Wang Shaoqi2, He Na2ORCID, Sun Hui2, Xu Linjuan3ORCID, Gurkalo Filip2
Affiliation:
1. College of Architectural Engineering, Jiaxing Nanhu University, Jiaxing 314001, China 2. School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454000, China 3. Key Laboratory of Lower Yellow River Channel and Estuary Regulation, MWR, Yellow River Institute of Hydraulic Research, YRCC, Zhengzhou 450003, China
Abstract
To improve the accuracy of debris flow forecasts and serve as disaster prevention and mitigation, an accurate and intelligent early warning method of debris flow initiation based on the IGWO-LSTM algorithm is proposed. First, the entropy method is employed to screen the early warning indicators. Then, the improved grey wolf algorithm (IGWO) is obtained by optimizing the grey wolf algorithm by combining elite reverse learning and adaptive convergence factors. Finally, the IGWO-LSTM algorithm is obtained by using IGWO to improve the total connection layer weight and bias parameters of LSTM, which takes the screened early warning indicators as input and outputs the early warning results of the debris flow formation risk level. In comparison with the methods introduced in earlier studies, the results demonstrate that the proposed method achieves superior outcomes in terms of assessing a single warning of multiple debris flow gullies, a multi-year warning of a single debris flow gully, and a multi-year warning of multiple debris flow gullies. The mean absolute error and root mean square error of the early warning results of the ANN model and PEEM method show low values, while the early warning hit rate shows high values, surpassing 90%. Also, the other two methods developed in the previous studies show low values of the early warning coverage rate, reaching 90% at most. Moreover, the triggered traffic model and MLPG method show high values in the early warning coverage rate, exceeding 90%, and low values in the early warning hit rate of less than 90%, and the average absolute error and root mean square error are high. On the other hand, the results of the proposed method show that the overall early warning hit rate is higher than 95%, the coverage rate is close to 100%, and the error is less than 1.5. Thus, the comprehensive analysis results show that the proposed method has better performance and higher reliability than other studied methods.
Funder
the Water Conservancy Cadres Education and Talent Cultivation the Yellow River Conservancy Commission
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Reference26 articles.
1. The recurrence interval of post-fire debris-flow generating rainfall in the southwestern United States;Staley;Geomorphology,2020 2. Yang, Z.Q., Zhao, X.G., and Chen, M. (2023). Characteristics, Dynamic Analyses and Hazard Assessment of Debris Flows in Niumiangou Valley of Wenchuan County. Appl. Sci., 13. 3. Zhao, X., Yang, Z., Meng, X., Wang, S., Li, R., Xu, H., Wang, X., Ye, C., Xiang, T., and Xu, W. (2023). Study on Mechanism and Verification of Columnar Penetration Grouting of Time-Varying Newtonian Fluids. Processes, 11. 4. Wang, L., Qiu, H., Zhou, W., Zhu, Y., Liu, Z., Ma, S.Y., Yang, D., and Tang, B. (2022). The post-failure spatiotemporal deformation of certain translational landslides may follow the pre-failure pattern. Remote Sens., 14. 5. Ma, S., Qiu, H., Zhu, Y., Yang, D., Tang, B., Wang, D., Wang, L., and Cao, M. (2023). Topographic Changes, Surface Deformation and Movement Process before, during and after a Rotational Landslide. Remote Sensing., 15.
|
|