Enhancing GaN/AlxGa1−xN-Based Heterojunction Phototransistors: The Role of Graded Base Structures in Performance Improvement

Author:

Zhang Lingxia1,Wu Hualong2,He Chenguang2ORCID,Zhang Kang2,Liu Yunzhou2,Wang Qiao2,He Longfei2,Zhao Wei2,Chen Zhitao2

Affiliation:

1. School of Physics, Electronics and Intelligent Manufacturing, Huaihua University, Huaihua 418000, China

2. Institute of Semiconductors, Guangdong Academy of Sciences, Guangzhou 510650, China

Abstract

This research explores the architecture and efficacy of GaN/AlxGa1−xN-based heterojunction phototransistors (HPTs) engineered with both a compositionally graded and a doping-graded base. Employing theoretical analysis along with empirical fabrication techniques, HPTs configured with an aluminum compositionally graded base were observed to exhibit a substantial enhancement in current gain. Specifically, theoretical models predicted a 12-fold increase, while experimental evaluations revealed an even more pronounced improvement of approximately 27.9 times compared to conventional GaN base structures. Similarly, HPTs incorporating a doping-graded base demonstrated significant gains, with theoretical predictions indicating a doubling of current gain and experimental assessments showing a 6.1-fold increase. The doping-graded base implements a strategic modulation of hole concentration, ranging from 3.8 × 1016 cm−3 at the base–emitter interface to 3.8 × 1017 cm−3 at the base–collector junction. This controlled gradation markedly contributes to the observed enhancements in current gain. The principal mechanism driving these improvements is identified as the increased electron drift within the base, propelled by the intrinsic electric field inherent to both the compositionally and doping-graded structures. These results highlight the potential of such graded base designs in enhancing the performance of GaN/AlxGa1−xN HPTs and provide crucial insights for the advancement of future phototransistor technologies.

Funder

National Key R&D Program of China

Key Area R&D Program of Guangzhou

National Natural Science Foundation of China

Science Research Foundation of Education Department of Hunan Province

Excellent Young Program of Education Department of Hunan Province

Guangdong Basic and Applied Basic Research Foundation

Guangzhou Basic and Applied Basic Research Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3